Lipschitz and Hölder stability of optimization problems and generalized equations
نویسندگان
چکیده
This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lipschitz and upper Hölder type, respectively, hold. Furthermore, we apply the above results to parametric mathematical programs with equilibrium constraints and demonstrate, how some classical results for the nonlinear programming problem can be recovered and even improved by our theory.
منابع مشابه
Directional Hölder Metric Regularity
This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directi...
متن کاملQuantitative Stability of Optimization Problems and Generalized Equations
This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lischitz and upper Hölder type, respectively, hold. Furthermore, we apply the a...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملLipschitz Stability of Solutions to some State-Constrained Elliptic Optimal Control Problems
In this paper, optimal control problems with pointwise state constraints for linear and semilinear elliptic partial differential equations are studied. The problems are subject to perturbations in the problem data. Lipschitz stability with respect to perturbations of the optimal control and the state and adjoint variables is established initially for linear–quadratic problems. Both the distribu...
متن کاملOn Regularity of Solutions and Lagrange Multipliers of Optimal Control Problems for Semilinear Equations with Mixed Pointwise Control-State Constraints
A class of nonlinear elliptic and parabolic optimal control problems with mixed control-state constraints is considered. Extending a method known for the control of ordinary differential equations to the case of PDEs, the Yosida-Hewitt theorem is applied to show that the Lagrange multipliers are functions of certain Lp-spaces. By bootstrapping arguments, under natural assumptions, optimal contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 158 شماره
صفحات -
تاریخ انتشار 2016